Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.448
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 125-129, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650141

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is an irreversible adverse event during the management of coronary heart disease that lacks effective controls. The underlying mechanism of MIRI still requires further investigation. Recent studies have suggested that overexpression of ATF3 protects against MIRI by regulating inflammatory responses, ferroptosis, and autophagy. The downstream target of ATF3, EGR1, also showed cardioprotective properties against MIRI by promoting autophagy. Therefore, further investigating the effect of ATF3/EGR1 pathway on MIRI-induced inflammation and autophagy is needed. Cardiomyocyte MIRI model was established by challenging H9C2 cells with hypoxia/reoxygenation (H/R). The ATF3 overexpression-H/R cell model by transfecting ATF3 plasmid into the H9C2 cell line. The transcription levels of ATF3 and EGR1 were determined using RT-qPCR, the levels of TNF-α and IL-6 were determined using ELISA kits, the protein expression of LC3 I, LC3 II, and P62 was determined via WB, and microstructure of H9C2 cell was observed by transmission electron microscopy (TEM). Overexpression of ATF3 significantly downregulated Egr1 levels, indicating that EGR1 might be the target of ATF3. By upregulating ATF3 levels, the extracellular levels of the inflammatory cytokines TNF-α and IL-6 significantly decreased, and the protein expression of the autophagy markers LC3 I, LC3 II, and P62 significantly increased. TEM results revealed that the cell line in the H/R-ATF3 group exhibited a higher abundance of autophagosome enclosures of mitochondria. The results indicated that ATF3/EGR1 may alleviate inflammation and improve autophagy in an H/R-induced MIRI model of cardiomyocytes.


Assuntos
Fator 3 Ativador da Transcrição , Autofagia , Proteína 1 de Resposta de Crescimento Precoce , Inflamação , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Fator de Necrose Tumoral alfa , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Autofagia/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Ratos , Linhagem Celular , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transdução de Sinais , Proteína Sequestossoma-1/metabolismo , Proteína Sequestossoma-1/genética
2.
Circ Res ; 134(6): 675-694, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484024

RESUMO

The impact of circadian rhythms on cardiovascular function and disease development is well established, with numerous studies in genetically modified animals emphasizing the circadian molecular clock's significance in the pathogenesis and pathophysiology of myocardial ischemia and heart failure progression. However, translational preclinical studies targeting the heart's circadian biology are just now emerging and are leading to the development of a novel field of medicine termed circadian medicine. In this review, we explore circadian molecular mechanisms and novel therapies, including (1) intense light, (2) small molecules modulating the circadian mechanism, and (3) chronotherapies such as cardiovascular drugs and meal timings. These promise significant clinical translation in circadian medicine for cardiovascular disease. (4) Additionally, we address the differential functioning of the circadian mechanism in males versus females, emphasizing the consideration of biological sex, gender, and aging in circadian therapies for cardiovascular disease.


Assuntos
Relógios Circadianos , Insuficiência Cardíaca , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Ritmo Circadiano , Cronoterapia , Insuficiência Cardíaca/terapia
3.
Int J Nanomedicine ; 19: 2071-2090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476275

RESUMO

Introduction: Acute inflammatory storm is a major cause of myocardial ischemia/reperfusion (I/R) injury, with no effective treatment currently available. The excessive aggregation of neutrophils is correlated with an unfavorable prognosis in acute myocardial infarction (AMI) patients. Exosomes derived from mesenchymal stromal cells (MSC-Exo) have certain immunomodulatory potential and might be a therapeutic application. Therefore, we investigated the protective role of MSC-Exo in modulating neutrophil infiltration and formation of neutrophil extracellular traps (NETs) following myocardial I/R injury. Methods: Exosomes were isolated from the supernatant of MSCs using a gradient centrifugation method. We used flow cytometry, histochemistry, and immunofluorescence to detect the changes of neutrophils post-intravenous MSC-Exo injection. Additionally, cardiac magnetic resonance (CMR) and thioflavin S experiments were applied to detect microvascular obstruction (MVO). The NLR family pyrin domain containing 3 (NLRP3) inflammasome was examined for mechanism exploration. Primary neutrophils were extracted for in vitro experiment. Antibody of Ly6G was given to depleting the neutrophils in mice for verification the effect of MSC-Exo. Finally, we analyzed the MiRNA sequence of MSC-Exo and verified it in vitro. Results: MSC-Exo administration reduced neutrophil infiltration and NETs formation after myocardial I/R. MSC-Exo treatment also could attenuate the activation of NLRP3 inflammasome both in vivo and in vitro. At the same time, the infarction size and MVO following I/R injury were reduced by MSC-Exo. Moreover, systemic depletion of neutrophils partly negated the therapeutic effects of MSC-Exo. Up-regulation of miR-199 in neutrophils has been shown to decrease the expression of NETs formation after stimulation. Discussion: Our results demonstrated that MSC-Exo mitigated myocardial I/R injury in mice by modulating neutrophil infiltration and NETs formation. This study provides novel insights into the potential therapeutic application of MSC-Exo for myocardial ischemia/reperfusion injury.


Assuntos
Exossomos , Armadilhas Extracelulares , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Humanos , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Exossomos/metabolismo , Armadilhas Extracelulares/metabolismo , Infiltração de Neutrófilos , MicroRNAs/genética , Traumatismo por Reperfusão/patologia
4.
Environ Sci Pollut Res Int ; 31(12): 18813-18825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349499

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a growing concern for global public health. This study seeks to explore the potential protective effects of L-carnitine (LC) against heart ischemia-reperfusion injury in rats. To induce I/R injury, the rat hearts underwent a 30-min ligation of the left anterior descending coronary artery, followed by 24 h of reperfusion. We evaluated cardiac function through electrocardiography and heart rate variability (HRV) and conducted pathological examinations of myocardial structure. Additionally, the study investigated the influence of LC on myocardial apoptosis, inflammation, and oxidative stress in the context of I/R injury. The results show that pretreatment with LC led to improvements in the observed alterations in ECG waveforms and HRV parameters in the nontreated ischemic reperfusion model group, although most of these changes did not reach statistical significance. Similarly, although without a significant difference, LC reduced the levels of proinflammatory cytokines when compared to the values in the nontreated ischemic rat group. Furthermore, LC restored the reduced expressions of SOD1, SOD2, and SOD3. Additionally, LC significantly reduced the elevated Bax expressions and showed a nonsignificant increase in Bcl-2 expression, resulting in a favorable adjustment of the Bcl-2/Bax ratio. We also observed a significant enhancement in the histological appearance of cardiac muscles, a substantial reduction in myocardial fibrosis, and suppressed CD3 + cell proliferation in the ischemic myocardium. This small-scale, experimental, in vivo study indicates that LC was associated with enhancements in the pathological findings in the ischemic myocardium in the context of ischemia/reperfusion injury in this rat model. Although statistical significance was not achieved, LC exhibits potential and beneficial protective effects against I/R injury. It does so by modulating the expression of antioxidative and antiapoptotic genes, inhibiting the inflammatory response, and enhancing autonomic balance, particularly by increasing vagal tone in the heart. Further studies are necessary to confirm and elaborate on these findings.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteína X Associada a bcl-2/metabolismo , Carnitina/farmacologia , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose
5.
Theranostics ; 14(3): 1241-1259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323308

RESUMO

Rationale: The transition from acute inflammation to fibrosis following myocardial ischemia‒reperfusion (MIR) significantly affects prognosis. Macrophages play a pivotal role in inflammatory damage and repair after MIR. However, the heterogeneity and transformation mechanisms of macrophages during this transition are not well understood. Methods: In this study, we used single-cell RNA sequencing (scRNA-seq) and mass cytometry to examine murine monocyte-derived macrophages after MIR to investigate macrophage subtypes and their roles in the MIR process. S100a9-/- mice were used to establish MIR model to clarify the mechanism of alleviating inflammation and fibrosis after MIR. Reinfusion of bone marrow-derived macrophages (BMDMs) after macrophage depletion (MD) in mice subjected to MIR were performed to further examine the role of S100a9hi macrophages in MIR. Results: We identified a unique subtype of S100a9hi macrophages that originate from monocytes and are involved in acute inflammation and fibrosis. These S100a9hi macrophages infiltrate the heart as early as 2 h post-reperfusion and activate the Myd88/NFκB/NLRP3 signaling pathway, amplifying inflammatory responses. As the tissue environment shifts from proinflammatory to reparative, S100a9 activates transforming growth factor-ß (Tgf-ß)/p-smad3 signaling. This activation not only induces the transformation of myocardial fibroblasts to myofibroblasts but also promotes fibrosis via the macrophage-to-myofibroblast transition (MMT). Targeting S100a9 with a specific inhibitor could effectively mitigate acute inflammatory damage and halt the progression of fibrosis, including MMT. Conclusion: S100a9hi macrophages are a promising therapeutic target for managing the transition from inflammation to fibrosis after MIR.


Assuntos
Doença da Artéria Coronariana , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Macrófagos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Fibrose , Inflamação/metabolismo , Doença da Artéria Coronariana/patologia , Isquemia/patologia , Reperfusão , Análise de Sequência de RNA , Camundongos Endogâmicos C57BL
6.
Int J Biometeorol ; 68(4): 731-742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197985

RESUMO

Numerous studies have shown that geomagnetic activity (GMA) contributes to the development and escalation of cardiovascular disease (CVD), as well as increased morbidity and mortality. However, the underlying molecular mechanisms and approaches for understanding GMA remain unclear. This study aimed to investigate the impact of GMA on oxidative stress and inflammatory responses. Myocardial ischemia/reperfusion injury (MI/RI) rat models were created under various geomagnetic field conditions. The range of cardiac function, markers of myocardial injury, inflammatory factors, and the TLR4/NF-κB signaling pathway were measured after the 24-h period. The findings showed that weak GMA significantly improved cardiac function in the MI/RI rat model and reduced the size of myocardial infarction and creatine kinase (CK) and lactic dehydrogenase (LDH) levels. Additionally, weak GMA enhanced superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content. Furthermore, weak GMA significantly reduced the levels of the myocardial inflammatory cytokines interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Conversely, the effects observed under severe GMA conditions were opposite to those observed under weak GMA. Western blot and qPCR analysis demonstrated that weak GMA led to a significant downregulation of TLR4, TRAF6, NF-κB, TNF-α, and MCP-1 in the MI/RI rat models. In contrast to weak GMA, severe GMA increased TLR4, TRAF6, NF-κB, and TNF-α expression. This study suggested that weak GMA had a limiting effect on MI/RI rat models, whereas severe GMA exacerbated injury in MI/RI rats. These effects were associated with oxidative stress and inflammatory responses and might potentially involve the TLR4/NF-κB signaling pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
7.
J Alzheimers Dis ; 97(4): 1545-1570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277294

RESUMO

Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.


Assuntos
Disfunção Cognitiva , Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Reperfusão , Comunicação , Disfunção Cognitiva/etiologia
8.
Appl Biochem Biotechnol ; 196(3): 1194-1210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37378719

RESUMO

Myocardial ischemia/reperfusion (I/R) injury is a pathological damage secondary to myocardial ischemia that can further aggravate tissue and organ injuries. Therefore, there is an urgent need to develop an effective approach for alleviating myocardial I/R injury. Trehalose (TRE) is a natural bioactive substance that has been shown to have extensive physiological effects in various animals and plants. However, TRE's protective effects against myocardial I/R injury remain unclear. This study aimed to evaluate the protective effect of TRE pre-treatment in mice with acute myocardial I/R injury and to explore the role of pyroptosis in this process. Mice were pre-treated with trehalose (1 mg/g) or an equivalent amount of saline solution for 7 days. The left anterior descending coronary artery was ligated in mice from the I/R and I/R + TRE groups, followed by 2-h or 24-h reperfusion after 30 min. Transthoracic echocardiography was performed to assess cardiac function in mice. Serum and cardiac tissue samples were obtained to examine the relevant indicators. We established an oxygen-glucose deprivation and re-oxygenation model in neonatal mouse ventricular cardiomyocytes and validated the mechanism by which trehalose affects myocardial necrosis via overexpression or silencing of NLRP3. TRE pre-treatment significantly improved cardiac dysfunction and reduced the infarct size in mice after I/R, accompanied by a decrease in the I/R-induced levels of CK-MB, cTnT, LDH, reactive oxygen species, pro-IL-1ß, pro-IL-18, and TUNEL-positive cells. Furthermore, TRE intervention suppressed the expression of pyroptosis-related proteins following I/R. TRE attenuates myocardial I/R injury in mice by inhibiting NLRP3-mediated caspase-1-dependent pyroptosis in cardiomyocytes.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trealose/farmacologia , Trealose/uso terapêutico , Piroptose , Espécies Reativas de Oxigênio/metabolismo
9.
J Mol Cell Cardiol ; 186: 94-106, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000204

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is closely related to the final infarct size in acute myocardial infarction (AMI). Therefore, reducing MIRI can effectively improve the prognosis of AMI patients. At the same time, the healing process after AMI is closely related to the local inflammatory microenvironment. Regulatory T cells (Tregs) can regulate various physiological and pathological immune inflammatory responses and play an important role in regulating the immune inflammatory response after AMI. However, different subtypes of Tregs have different effects on MIRI, and the same subtype of Tregs may also have different effects at different stages of MIRI. This article systematically reviews the classification and function of Tregs, as well as the role of various subtypes of Tregs in MIRI. A comprehensive understanding of the role of each subtype of Tregs can help design effective methods to control immune reactions, reduce MIRI, and provide new potential therapeutic options for AMI.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Linfócitos T Reguladores , Infarto do Miocárdio/terapia
10.
Am J Med Sci ; 367(1): 49-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939881

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (I/R), a harmful process in the treatment of cardiovascular diseases, can cause secondary damage to the cardiac tissues. Circular RNAs (circRNAs) are important regulators in a number of cardiac disorders. However, the role of circHDAC9 in myocardial I/R injury has not been clarified. METHODS: Human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R) and mice were subjected to I/R. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to analyze the expression of circHDAC9, miR-671-5p, and SOX4, and western blot was used to detect SOX4 protein. The binding relationship among circHDAC9, miR-671-5p, and SOX4 was confirmed by RNA pull-down, luciferase, and RNA immunoprecipitation (RIP) assays. The effects of circHDAC9/miR-671-5p/SOX4 axis on the apoptosis, oxidative stress and inflammation were evaluated in both myocardial I/R injury models. RESULTS: The expression of circHDAC9 and SOX4 was noticeably elevated, whereas miR-671-5p expression was downregulated in both myocardial I/R injury models. circHDAC9 knockdown significantly reduced the apoptosis, activities of caspase-3 and caspase-9, ROS intensity, MDA activity, and concentrations of TNF-α, IL-1ß, and IL-6, but increased the viability and SOD activity in H/R-treated HCMs. Suppression of circHDAC9 dramatically reduced the levels of circHDAC9 and SOX4, while enhanced miR-671-5p expression in H/R-treated HCMs. CircHDAC9 functioned via sponging miR-671-5p to regulate SOX4 expression in vitro. Additionally, silencing of circHDAC9 improved the pathological abnormalities and cardiac dysfunction, and reduced the apoptosis, oxidative stress and inflammation in mice with myocardial I/R injury. CONCLUSIONS: Inhibition of circHDAC9 significantly improved myocardial I/R injury by regulating miR-671-5p/SOX4 signaling pathway.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Circular , Animais , Humanos , Camundongos , Apoptose , Inflamação/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/farmacologia , RNA Circular/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 1209-1218, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37650890

RESUMO

Aging is known as a main risk factor in the development of cardiovascular diseases. Naringin (NRG) is a flavonoid compound derived from citrus fruits. It possesses a wide spectrum of pharmacological properties, including antioxidant anti-inflammatory, and cardioprotective. This investigation aimed to assess the cardioprotective effect of NRG against the ischemia/reperfusion (I/R) injury in aged rats. In this study, D-galactose (D-GAL) at the dose of 150 mg/kg/day for 8 weeks was used to induce aging in rats. Rats were orally gavaged with NRG (40 or 100 mg/kg/day), in co-treatment with D-GAL, for 8 weeks. The Langendorff isolated heart was used to evaluate the effect of NRG on I/R injury in aged rats. NRG treatment diminished myocardial hypertrophy and maximum contracture level in aged animals. During the pre-ischemic phase, reduced heart rate was normalized by NRG. The effects of D-GAL on the left ventricular end diastolic pressure (LVDP), the rate pressure product (RPP), and the minimum and maximum rate of left ventricular pressure (±dp/dt) improved by NRG treatment in the perfusion period. NRG also enhanced post-ischemic recovery of cardiac functional parameters (± dp/dt, and RPP) in isolated hearts. An increase in serum levels of the lactate dehydrogenase (LDH), the creatine kinase-MB (CK-MB), and the tumor necrosis factor-alpha (TNF-α) were reversed by NRG in aged rats. It also normalized the D-GAL-decreased the superoxide dismutase (SOD) activity in the heart tissue. NRG treatment alleviated cardiac injury in aged hearts under conditions of I/R. NRG may improve aging-induced cardiac dysfunction through anti-oxidative and anti-inflammatory mechanisms.


Assuntos
Flavanonas , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Ratos Sprague-Dawley , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Coração , Superóxido Dismutase-1 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Miocárdio/patologia
12.
J Alzheimers Dis ; 97(1): 205-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38043015

RESUMO

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has been shown to impose deleterious effects not only on the heart but also on the brain. Our previous study demonstrated that pretreatment with a mitochondrial fusion promoter (M1) provided central neuroprotective effects following cardiac I/R injury. OBJECTIVE: To investigate the effects of M1 given during the ischemic phase and M1 given at the beginning of reperfusion on brain pathologies following cardiac I/R. METHODS: Male Wistar rats were randomly divided into either a sham operation (n = 6) or cardiac I/R injury (n = 18) group. Rats with cardiac I/R injury were then randomly divided into 3 subgroups: 1) Control, 2) M1 treatment during cardiac ischemia (2 mg/kg, intravenous (i.v.)), and 3) M1 treatment at the beginning of reperfusion (2 mg/kg, i.v.). After euthanasia, the brain of each rat was removed for further analysis. RESULTS: Cardiac I/R injury caused brain mitochondrial dynamic imbalance, brain mitochondrial dysfunction, brain apoptosis, microglial dysmorphology, brain inflammation, tau hyperphosphorylation, and synaptic dysplasticity. M1 treatment at both time points effectively improved these parameters. M1 given during the ischemic phase had greater efficacy with regard to preventing brain mitochondrial dysfunction and suppressing brain inflammation, when compared to M1 given at the beginning of reperfusion. CONCLUSIONS: Our findings suggest that treatment with this mitochondrial fusion promoter prevents mitochondrial dynamic imbalance in the brain of rats with cardiac I/R injury, thereby attenuating brain pathologies. Interestingly, giving the mitochondrial fusion promoter during the ischemic phase exerted greater neuroprotection than if given at the beginning of reperfusion.


Assuntos
Doença da Artéria Coronariana , Encefalite , Doenças Mitocondriais , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Dinâmica Mitocondrial , Ratos Wistar , Neuroproteção , Traumatismo por Reperfusão Miocárdica/patologia , Reperfusão , Isquemia
13.
Chin J Integr Med ; 30(5): 421-432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38153596

RESUMO

OBJECTIVE: To investigate the main components and potential mechanism of Shuxuening Injection (SXNI) in the treatment of myocardial ischemia-reperfusion injury (MIRI) through network pharmacology and in vivo research. METHODS: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) and PharmMapper databases were used to extract and evaluate the effective components of Ginkgo biloba leaves, the main component of SXNI. The Online Mendelian Inheritance in Man (OMIM) and GeneCards databases were searched for disease targets and obtain the drug target and disease target intersections. The active ingredient-target network was built using Cytoscape 3.9.1 software. The STRING database, Metascape online platform, and R language were used to obtain the key targets and signaling pathways of the anti-MIRI effects of SXNI. In order to verify the therapeutic effect of different concentrations of SXNI on MIRI in rats, 60 rats were first divided into 5 groups according to random number table method: the sham operation group, the model group, SXNI low-dose (3.68 mg/kg), medium-dose (7.35 mg/kg), and high-dose (14.7 mg/kg) groups, with 12 rats in each group. Then, another 60 rats were randomly divided into 5 groups: the sham operation group, the model group, SXNI group (14.7 mg/kg), SXNI+LY294002 group, and LY294002 group, with 12 rats in each group. The drug was then administered intraperitoneally at body weight for 14 days. The main biological processes were validated using in vivo testing. Evans blue/triphenyltetrazolium chloride (TTC) double staining, hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were used to investigate the efficacy and mechanism of SXNI in MIRI rats. RESULTS: Eleven core targets and 30 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were selected. Among these, the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway was closely related to SXNI treatment of MIRI. In vivo experiments showed that SXNI reduced the myocardial infarction area in the model group, improved rat heart pathological damage, and reduced the cardiomyocyte apoptosis rate (all P<0.01). After SXNI treatment, the p-PI3K/PI3K and p-AKT/AKT ratios as well as B-cell lymphoma-2 (Bcl-2) protein expression in cardiomyocytes were increased, while the Bax and cleaved caspase 3 protein expression levels were decreased (all P<0.05). LY294002 partially reversed the protective effect of SXNI on MIRI. CONCLUSION: SXNI protects against MIRI by activating the PI3K/AKT signaling pathway.


Assuntos
Apoptose , Medicamentos de Ervas Chinesas , Traumatismo por Reperfusão Miocárdica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Apoptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Injeções , Ratos
14.
Eur J Pharmacol ; 963: 176235, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096967

RESUMO

Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (ß2i and ß5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases ß5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.


Assuntos
Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Necroptose , Apoptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Isquemia , Reperfusão , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Talanta ; 270: 125571, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154354

RESUMO

Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Animais , Humanos , Antioxidantes/farmacologia , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio , Diagnóstico por Imagem , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ácido Peroxinitroso , Corantes Fluorescentes
16.
Drug Deliv ; 31(1): 2298514, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38147501

RESUMO

Acute myocardial infarction, characterized by high morbidity and mortality, has now become a serious health hazard for human beings. Conventional surgical interventions to restore blood flow can rapidly relieve acute myocardial ischemia, but the ensuing myocardial ischemia-reperfusion injury (MI/RI) and subsequent heart failure have become medical challenges that researchers have been trying to overcome. The pathogenesis of MI/RI involves several mechanisms, including overproduction of reactive oxygen species, abnormal mitochondrial function, calcium overload, and other factors that induce cell death and inflammatory responses. These mechanisms have led to the exploration of antioxidant and inflammation-modulating therapies, as well as the development of myocardial protective factors and stem cell therapies. However, the short half-life, low bioavailability, and lack of targeting of these drugs that modulate these pathological mechanisms, combined with liver and spleen sequestration and continuous washout of blood flow from myocardial sites, severely compromise the expected efficacy of clinical drugs. To address these issues, employing conventional nanocarriers and integrating them with contemporary biomimetic nanocarriers, which rely on passive targeting and active targeting through precise modifications, can effectively prolong the duration of therapeutic agents within the body, enhance their bioavailability, and augment their retention at the injured myocardium. Consequently, these approaches significantly enhance therapeutic effectiveness while minimizing toxic side effects. This article reviews current drug delivery systems used for MI/RI, aiming to offer a fresh perspective on treating this disease.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Morte Celular , Antioxidantes/metabolismo
17.
PLoS One ; 18(12): e0295566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134018

RESUMO

BACKGROUND: The purpose of this research was to verify that vericiguat, a soluble guanylate cyclase (sGC) stimulator, reduces myocardial ischemic reperfusion injury (MIRI), and to learn how this reduction happens. METHODS AND RESULTS: To develop an ischaemia/reperfusion (I/R) model, the left anterior descending artery was blocked in minipigs under anesthesia for 90 minutes, followed by 180 minutes of reperfusion. Vericiguat is administered three hours before surgery. Two weeks after receiving therapy, pigs underwent cardiovascular magnetic resonance imaging (MRI) to evaluate the results. The MRI results suggest improvement in the myocardial infarct after vericiguat treatment. Vericiguat treatment for two weeks enhanced vascularity, inhibited pro-inflammatory cells, and decreased collagen deposition in the infarct zone of pigs. Short-term experiments investigating possible explanations have indicated that vericiguat has antiapoptotic effects on cardiomyocytes and increases levels of autophagy. CONCLUSIONS: Vericiguat, an SGC activator, reduces MIRI in pigs by boosting autophagy, preventing apoptosis, and promoting angiogenesis.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Suínos , Animais , Porco Miniatura , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Reperfusão
18.
Aging (Albany NY) ; 15(19): 10627-10639, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819785

RESUMO

BACKGROUND: A mouse model of myocardial ischemia-reperfusion (I/R) is widely used to study myocardial ischemia-reperfusion injury (I/RI). However, few studies focus on the direct comparison of the extent of pathological events resulting from variant durations of ischemia and reperfusion process. METHODS: A mouse model of I/RI was established by ligation and perfusion of the left anterior descending coronary artery (LAD), and the dynamic changes were recorded by electrocardiogram at different stages of I/R. Subsequently, reperfusion duration was used as a variable to directly compare the phenotypes of different myocardial injury degrees induced by 3 h, 6 h and 24 h reperfusion from myocardial infarct size, myocardial apoptosis, myocardial enzyme, and inflammatory cytokine levels. RESULTS: All mice subjected to myocardial I/R surgery showed obvious myocardial infarction, extensive myocardial apoptosis, dynamic changes in serum myocardial enzyme and inflammatory cytokines, at least for the first 24 h of reperfusion. The infarct size and apoptosis rates gradually increased with the extension of reperfusion time. The peaks of serum myocardial enzyme and inflammatory cytokines occurred at 6 h and 3 h of reperfusion, respectively. We also established I/R mice models with 30 and 60 mins of ischemia. After 21 days of remodeling, longer periods of ischemia increased the degree of fibrosis and reduced cardiac function. CONCLUSIONS: In summary, we conclude that reperfusion durations of 3 h, 6 h, and 24 h induces different injury phenotypes in ischemia-reperfusion mouse model. At the same time, the ischemia duration before reperfusion also affects the degree of cardiac remodeling.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/patologia , Citocinas , Fenótipo , Reperfusão , Apoptose
19.
Int J Immunopathol Pharmacol ; 37: 3946320231196450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643354

RESUMO

Objectives: Myocardiopathy occurs in ischemia-induced injury caused by dysregulation of autophagy of cardiac tissues. The present report evaluates the protective effect of ketamine and insulin against myocardial injury in type 2 diabetic rats (T2DM).Methods: The effects of ketamine and its combination with insulin on biochemical parameters and inflammatory cytokines in the serum of I/R-induced myocardial injury in T2DM rats were evaluated. The parameters of reactive oxygen species and the expression of autophagosome signaling pathway proteins were also determined. Using transmission electron microscopy, we investigated autophagosomes. Western blots were used to detect autophagy-associated signaling pathways. Myocardial function was determined by echocardiography and histopathological changes in myocardial tissues were also determined in I/R-induced myocardial injury in type 2 diabetic rats.Results: There was a significant reduction in glucose, AST, LDH, and CK-MB levels and cytokines (IL-1ß, IL-6, and TNF-α) in serum of the ketamine (p < .05) and ketamine + insulin (p < .01) groups than in the diabetic + I/R. MDA and ROS levels were reduced with a substantial (p < .05) increase in GSH levels through improved cardiac function in the ketamine (p < .05) and ketamine + insulin (p < .01) groups than the diabetic + I/R group. There was an increase in mature autophagosomes in diabetic+I/R+Kt+In compared to diabetic+I/R+Kt alone in infarction and marginal zones. It should be noted that the significant increase (p < .01) in protein levels of the autophagy-associated intracellular signaling pathways AMPK and mTOR, as well as an increase in LC3-II and BECLIN-1, suggests that ketamine combined with insulin-activated autophagy-associated intracellular signaling AMPK and mTOR.Conclusion: The findings of the study suggest that ketamine combined with insulin administration remarkably protects I/R-induced myocardial injury in rats with T2DM by reducing the dysregulation of autophagy.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ketamina , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Ketamina/farmacologia , Ketamina/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Reperfusão , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia
20.
J Cardiovasc Transl Res ; 16(6): 1373-1382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37584895

RESUMO

Penehyclidine hydrochloride (PHC) is an anticholinergic drug with cardioprotective effects. Ferroptosis is closely related to myocardial ischaemia-reperfusion injury (MIRI). In the present study, MIRI was induced in rats by left anterior descending coronary artery ligation. PHC pretreatment increased haemodynamic parameters and histopathological damage and reduced myocardial infarction size in the MIRI model. PHC pretreatment also inhibited ferroptosis, which was characterized by the decreased levels of Fe2+, 4-hydroxynonenal and ACSL4, and increased levels of GPX4, GSH-Px and GST. In response to 6 h of oxygen-glucose deprivation and 18 h of reoxygenation, PHC pretreatment had the same effects on these factors in H9c2 cells and reduced lipid ROS levels. Furthermore, ACSL4 overexpression reversed the protective effects of PHC on H9c2 cells. These results indicated that PHC inhibited MIRI through ACSL4-mediated ferroptosis. This study demonstrated that PHC could inhibit ferroptosis in MIRI and the relationship among PHC, ACSL4, ferroptosis and MIRI. This study demonstrated the inhibitory effect of PHC on ferroptosis and showed that PHC affects MIRI through ACSL4-mediated ferroptosis in vivo and in vitro.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Cardiotônicos , Quinuclidinas/farmacologia , Quinuclidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...